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Pulsars as probes of newtonian dynamical systems

By E.S. PHINNEY
Theoretical Astrophysics, 151-33 Caltech, Pasadena, California 91125, U.S.A.

As clocks, pulsars rival the best atomic clocks on Earth. Though the rest-frame ‘“tick’
rate (period P) of any given pulsar is unknown, the rest-frame rates of change of the
periods are known to be very small. Therefore when they are observed to be large,
one is quite certain that the rate of changes must be due to changing Doppler shifts:
P to acceleration, P to jerk, and periodic shifts to orbiting companion stars or
planets. The first two give otherwise unobtainable information on the density and
masses of the stellar remnants in the cores of globular clusters. The orbits of binary
pulsars provide a test of the theory of the evolution of red giant stars, and in globular
clusters provide the first direct evidence for the three- and four-body encounters
which are believed to determine the dynamical evolution of globular clusters. The
orbits of binary pulsars in our own Galaxy also show evidence for the fluctuations
which the fluctuation—dissipation theorem implies should occur during the
dissipative tidal circularization of orbits. And newtonian dynamical effects may soon
add irrefutable confirmation to recent observations suggesting that some pulsars are
surrounded by planetary systems similar to our own. There may not be life on their
planets, but pulsars certainly breathe new life into the study of newtonian dynamical
systems.
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1. Introduction

Except for some small effects, such as the precession of the perihelia of the inner
planets and gas outflows from comets, the dynamics of the solar system is described
with extraordinary accuracy by the simple laws of newtonian dynamics. The current
high precision of Solar System ephemerides come largely from measurements of the
light-travel time of signals between the Earth and local oscillators on spacecraft
(both free-flying and on the surfaces of moons and planets). A pulsar orbiting another
body is a similarly precisely predictable clock. If the pulsar in its orbit moves farther
from the Earth, the arrival times of its pulses will be delayed by the time it takes
light to traverse the increased distance. (This effect was discovered in 1675 by the
Danish astronomer Ole Roemer, who noticed that the times of eclipses of Jupiter’s
satellites varied periodically over the year by +8 min. He correctly attributed this
variation to the time it took light to cross the Earth’s orbit. Pulsar astronomers still
worry about making this correction for the Earth’s motion, to ensure that changes
in the pulse arrival times are due to the pulsar alone, and not to uncorrected parts
of the Earth’s motion!)

The most accurate measurements of pulse arrival time, and hence change in pulsar
distance, require a pulsar with a short spin period, a stable pulse profile, and a stable
spin rate. Conveniently, nature has arranged to put pulsars with these properties
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40 E. 8. Phinney

exactly in those environments where the distance measurements they allow are the
most interesting! This may be because the stablest pulsars are old ones whose
apparently weak magnetic fields put small stresses on their neutron star crusts. For
such a neutron star to have acquired a short period, it must have acquired angular
momentum by accreting matter from a companion star. Since a neutron star must
typically wait a long time after its formation for a companion star to come close
enough (or swell up enough) for the neutron star to pull mass off it, neutron stars
which have accreted matter are generally old and stable. So pulsars in binary systems
(or in globular clusters, where the density of stars is high enough that binaries can
be disrupted by passing stars) tend to be the ones which can be timed very precisely.
Timing residuals of 10'-10? us per observation are not uncommon. For periodic
terms, observations over many orbits can be averaged, improving the accuracy in the
mean by the square root of the number of orbits averaged. In many binary pulsars,
the averaged residuals are ~ 1 us, so the pulsar’s changing distance from Earth is
known to a precision of ~ ¢(1 ps) = 300 m. Since this is a small fraction of a neutron’s
star’s ~ 10 km radius, one might worry that residuals of this order might be caused
by changes in the pulsars’ magnetospheres. However, the natural timescales for such
changes are milliseconds (Alfvén or elastic wave crossing times) and millions of years
(magnetic field motion or decay), and there is no evidence that they have any effect
on the precision of timing binary orbits (timescales of hours to years).

Secular effects (as are discussed in §§2 and 3) can be measured to even more
startling precision with a stable pulsar, since the phase change they induce increases
monotonically with time. If the pulsar pulse phase ¢ is defined so that ¢e[0, 1]
covers a whole pulse period, then

L ar t 1p ¢ 21 52 _ 2 _t__3
¢ =Lmzm-§l)(0)(1—)(—o—)> +3[2P(0) P(O)P(O)](P(O)> +...,  (1.1)

if the pulsar is monitored for a time ¢. If the pulsar phase ¢ is measured N times
during the time ¢, with a timing residual in a single measurement Pe, (typically ¢, ~
107?), then the various terms in equation (1.1) can be fitted to a precision of order
Fey/v/N, where # ~ 20 is a factor which accounts for the fact that many
parameters are being fitted simultaneously, including the position of the pulsar on
the sky (needed to remove the Earth’s motion! A more complete review of fitting and
the effects of noise in pulsar timing is given in Blandford et al. (1984)).

Beyond the Solar System, newtonian dynamics has long been known to apply to
binary stars. Felix Savary is conventionally assigned the honour of being the first to
show, in 1827, that a visual binary star system showed an elliptical orbit, confirming
that the inverse square law applied outside the Solar System. The highest precision
in determining the properties of the orbits of ordinary stars today comes from
combining radial velocities (from measuring the Doppler shifts of spectral lines,
which can with care give precision of < 100 m s7!) with measurements of the angular
separation using optical interferometers (which currently give precisions up to
~ 0.1 mas ~ 5x 107 rad). Representative of the state of the art are respectively
the work of Griffin (1991) and of Pan et al. (1992). Good precision in the orbits of
bright stars gives uncertainties of 1% in the orbital eccentricities and semi-major
axes, and of a few percent in the mass function and (for binaries where both
components are visible) in the individual stellar masses.

To see how the properties of the orbits are deduced, consider for simplicity a binary

Phil. Trans. R. Soc. Lond. A (1992)
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Pulsars as probes of newtontan dynamical systems 41

star in a circular orbit. Let the separation between the stars be a, and their masses
be M,, M,. Take M, > M,. Then (neglecting for the moment the parallax of the
Earth’s own orbit about the Sun) as projected on the sky each star j will trace out
an ellipse with semi-major axis a,/D and semi-minor axis a; cos ¢/D, where D is the
distance from Earth to the binary, 7 is the inclination, defined as the angle between
the line of sight to Earth and the normal to the orbital plane (¢ = 90° for an orbit seen
edge-on), and a, = alM,/M,+M,), a,=aM,/(M,+M,). If the stars carry clocks
ticking with intrinsic period P, (which may be atoms or a pulsar rotation period),
then to newtonian order, the Doppler shifts allow us to determine the radial velocity
from the observed clock tick period:

P=(14V/o)P, (1.2)

Here ¥, is the component of the relative velocity (¥,— V) n between the clock-
carrying star and Earth, measured along the unit vector n to the star from the Earth,
whose velocity is V. If we refer the velocity not to the Earth frame but to the Solar
System barycentre (i.e. remove the contributions of the Earth’s orbital and
rotational velocities), then for a star on a circular orbit, the radial velocity 1, will
vary sinusoidally, as

2ma; sin 1

V.; =K, cos (0+0) = P
b

cos (w+0). (1.3)

In this, 6 = (2n/P,)t, P, is the orbital period of the binary, and ¢ is newtonian
universal time.

Observations of the clock frequency as a function of time thus allow one to
determine P, and , sin 7 (and also the orbital eccentricity e and the angle w between
the line of nodes and the line of apsides, in the more general case of an elliptical orbit,
whose equations are slightly more complicated —see any classical astronomy
textbook, and the nice figures in King (1920)). Then combining (1.3) with Kepler’s
third law: G(M,+M,) = (2n/P,)*a®, we get the two equivalent forms

_ (GM,sini)®  PK3 .. 2_11)2
_(GMl-i-GMz)Z_ o = (a, sin 19) 7 (1.4)

Gf(M,, My)

if the velocity of M, is measured (exchange subscripts 1 and 2 if that of M, is
measured). The quantity f(M,,M,) is known as the mass function, and is tabulated
for the binary pulsars in tables 2 and 3. Note that we have multiplied all masses by
Newton’s gravitational constant @, since @ is known in (MKS) units only to four
significant figures. But from Solar System measurements, ¢ is known in (metres,
solar masses, seconds) to enormous precision. The masses of celestial bodies (as
GM,/GM ) are thus defined in solar masses much more precisely than in kilograms.

For pulsars, there are two ways to determine a, sin i (a, is the semi-major axis of
the pulsar’s orbit about the binary’s centre of mass). The first, and less accurate
method is simply to determine the pulse period in each observing session. Equation
(1.2) then determines V] for each session, and (1.3) then determines a, sin ¢ just as in
optical spectroscopic observations. This method is often used to generate initial
rough orbits, and when scintillation makes the pulsar’s flux too erratic to phase
connect the signal. The second, and more accurate method requires counting
individual pulses as in equation (1.1). One then measures the delays in the arrival of

Phil. Trans. R. Soc. Lond. A (1992)
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42 E. S. Phinney
the nth pulse. The delay is just the light travel time across the orbit: for circular
orbits, At = a,c" sin i sin (w+6), (1.5)

which can also be obtained by integrating equation (1.3). Thus measuring A¢(¢) allows
one to determine a, sin < and P and hence the mass function (1.4).

Of particular interest to us is the measurement of small eccentricities in nearly
circular orbits. As Hipparcus discovered, a slightly eccentric orbit can be described
as a circular orbit, with a superposed epicyclic motion of semi-amplitude along the
line of sight Lea, sin ¢, with twice the orbital frequency (twice, because the epicyclic
variation in radius, at the orbital frequency, is multiplied by the sine of the angle to
the line of sight, which also varies at the orbital frequency, and products of
trigonometric functions vary at the sum and difference (here 0) of their frequencies).
Thus, as a function of orbital phase, the difference in pulse arrival times between a
pulsar in a circular orbit and one with a small e will be

Ot = At(t) — At oy (t) = (ea,/2c) sin i [sin w+sin (4nt/ P, —w)]. (1.6)

Thus for a typical binary pulsar with a, sin i/¢c = 10 s, timing accuracy of 1 ps allows
us to detect e as small as 1 us/10 s = 1077, some five orders of magnitude more precise
than the Ae & 1072 obtained in most optical measurements of spectroscopic binaries.
This precision has interesting consequences which we explore in §7.

Observations of a binary in which only one star’s radial velocity can be measured
(a so-called single line spectroscopic binary, such as a pulsar with an invisible
companion) allow us to solve for six of the eight newtonian parameters of a binary
(position and velocity relative to the centre of mass, plus two masses). To determine
the remaining two parameters (M,/M,, ), we need additional information. A double
line binary (two pulsars in a binary (not yet discovered), or a pulsar plus a star with
suitably narrow and measurable spectral lines (not yet any of the pulsars with
optically detected companions)) would allow us to determine the ratio M,/M,, but
not ¢. To solve for 7, we need either a measurement of the pulsar’s transverse velocity
(provided roughly in one case by Lyne (1984) by using scintillation pattern speeds)
or a map of the orbit projected on the sky (i.e. a visual binary, not yet done, but
perhaps feasible someday with optical interferometers. One would solve for 7 by
comparing the actual eccentricity from the radial velocity curve with that of the
projected orbit). Alternatively, in close binaries, one can sometimes detect the non-
newtonian effects of general relativity (the rate of advance of periastron gives
M, +M,; gravitational time delays give ¢ and the individual masses, as discussed by
Taylor and by Damour in this symposium).

In §2 I show how the P of a pulsar is affected by its acceleration, and I show that
this allows us to determine cluster mass-to-light ratios in a distance- and model-
independent fashion. I use this and the radial distribution of pulsars in the globular
star cluster M15 to constrain the central density and stellar composition of the core
of M15. In §3 I show that in a globular cluster, the changing accelerations caused by
passing stars can produce observable Ps, which directly constrain the mass density
in a pulsar’s local environment. In §4 I discuss the consequences of stellar evolution
for the orbits of pulsars recycled by mass transfer from their companions, and
compare the predicted core mass-period relation with the observed properties of
binaries in the Galactic disc and globular clusters. In §5 I discuss the effects of
passing stars on binary pulsars. I derive cross sections for the eccentricities so
induced, and discuss ionization, exchange, and the hardening and recoil of binaries

Phil. Trans. R. Soc. Lond. A (1992)
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Pulsars as probes of newtonian dynamical systems 43

after encounters. In §6 I discuss the problem of recycling pulsars in low density
globular clusters. I show how exchanges and resonant three- and four-body
encounters involving primordial binaries may solve the problem, and explain the
unusually large numbers of pulsars in globular clusters like 47 Tuc and Ter 5.

In §7 I prove that the fluctuating density of a convective star produces time-
dependent moments of quadrupole and higher order. If the star is in a binary, these
fluctuating moments pump the eccentricity of the orbital motion, while dissipation
of the time-dependent tide tends to damp the eccentricity of the orbit. I prove that
if the convection is confined to a single thin layer, a (statistical) equilibrium
eccentricity is reached when the energy of the orbital epicyclic motion is equal to the
energy in a single convective eddy. I show that the predictions of this theory are in
good agreement with the measured eccentricities of the orbits of pulsars with white-
dwarf companions. Without the pumping by the fluctuating potential, I show that
tidal damping alone would have produced orbits with much smaller eccentricities
than are observed. Perturbations by passing stars and mass loss at the end of the red-
giant progenitor’s life are inadequate to induce the observed eccentricities. In §8 I
discuss the dynamics of the planets around PSR1257 4 12. Section 9 presents a brief
conclusion. Three tables give parameters of all binary and globular cluster pulsars
publicly announced at the time of writing.

2. Acceleration, P and surface density

An accelerated pulsar has a time-varying Doppler shift, and thus a changing
period. If we transform the period measured at a telescope to the period P which
would be measured at the Solar System barycentre (velocity V;), then the period is
given by (1.2) with V, = (¥, — V;)-n, where V,, is the pulsar velocity and n is the unit
vector pointing from the barycentre to the pulsar. Differentiating, we obtain

P P (ay,—a,)n Vi

PRt
where a = V is the acceleration, D is the distance between the pulsar and the solar
system barycentre, and V| is the component of the relative velocity perpendicular to
n, i.e. uD, where u is the pulsar proper motion.

The third (proper motion) term in (2.1) is strictly positive, and the first term
should be too (pulsars slow down as they lose rotational energy). Thus a negative P
can be produced only if the acceleration (second) term is negative and dominates the
other terms.

The first term in (2.1) is just the reciprocal of twice the pulsar’s (intrinsic)
characteristic age 7,. The third term is

24x10—18s—1—Vl—2/D r ! A : D (2.2)
' 150 km 7! kpe 771010 years )\ 150 km s kpe? '

The Galactic contributions to the second term are similar in size. If we approximate
the Galaxy’s potential as that of a spherically symmetric isothermal sphere, with a
flat rotation curve of velocity V, &~ 220 km s™*, then a pulsar at Galactic longitude /,
latitude b and distance D = R, ¢ has

(2.1)

(ap—ab)'n
¢

(2.3)

d—cos b cosl
14+62—28 cosbcosl|

= —Ao[cos b cos [+

Gal

Phil. Trans. R. Soc. Lond. A (1992)
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Amax (R J_)

8P<0 oP>0

Figure 1. Schematic illustration of the line of sight component a, of a pulsar’s acceleration by a star
cluster, as a function of the distance / between the pulsar and the sky-plane through the cluster
centre.  is defined positive when the pulsar is behind the centre. For any given projected distance
R, of the pulsar, there is a maximum possible a,.

where R, =~ 7.5 kpc is the Suns Galactocentric distance, and 4, = VZ/(cR,)
Tx107* g7 =2.2x 107" a~*. Thus the Galactic and proper- motlon contrlbutlons
cannot, dominate the 1ntr1ns1c P, except for pulsars with characteristic ages older
than the universe (or perhaps a blt less if they are unusually close to Earth or the
Galactic centre).

If the pulsar lies near the centre of a dense star cluster, however, the pulsar
acceleration can be substantially larger. Neglecting the Galactic and proper-motion
contributions (2.2), (2.3), we have for a spherical star cluster

P_F 1GM(<n) (2.4)
=0 -~ =N .

where r = +/(R3 +1?), and [ is the distance between the pulsar and the plane of the
sky which passes through the centre of the cluster (see figure 1). If the pulsar has
P < 0, then the second term must dominate, and [ > 0 (the pulsar lies in the back half
of the cluster). One can observe R, but not I. However, the absolute value of the
second term in (2.4) vanishes if / = 0 (acceleration perpendicular to the line of sight)
or |I| =0 (no acceleration), and reaches a maximum (see figure 1) at an intermediate
value of |l], typically of order 1/ (R2 +r2%), where r, is the cluster core radius. The
maximum over /, for given R of the second term a,/c = G(M < r)1/r* depends only

Phil. Trans. R. Soc. Lond. A (1992)
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Pulsars as probes of newtonian dynamical systems 45

on the cluster’s mass profile, but the probability of each I and hence of each a,
depends on the radial density profile of the pulsar distribution. The max(|a,|), and
probability distributions p(|a,| | R ,) have been computed by Phinney (1992) for many
model clusters, ranging from simple powerlaw and King models to numerical multi-
mass Fokker-Planck models. Two useful rules of thumb emerged from these
calculations. First, to within about 10 % accuracy, at all projected radii in all model

clusters, _

max |a| ¥ 11GZ(< R,) = L.1GM ., (< RB,)/nR%, (2.5)
where M., is the mass within a cylindrical tube of radius R, along the line of sight
through the cluster centre. Observations of the surface brightness of the globular

cluster tell us directly the total luminosity within similar cylindrical tubes. If a
pulsar has P/P < 0, then (2.1) and the discussion following it tells us that

P la)| _ e LIGE(<R)) -16 ) -1
X = = . 2.6
5| << 5x10 100 po?) © (2.6)

¢ c ¢
Hence the ratio of the observed negative P/P to the observed surface density gives
us directly a strict lower limit to the mass-to-light ratio of the cluster within the
cylinder on which the pulsar is projected. In fact, even the distance to the globular
cluster cancels out in the ratio. A less precise rule of thumb (good only to ~ 50 %)

* max R ) 1 o(R)® 10_17( o(R,) ) lpe o o
¢ TN/ (R T 10 kms™) /(P2+R3) "~ '
where o(R) is the line-of-sight velocity dispersion of giant stars at the pulsar
position, and r, is the cluster core radius.
Another useful rule of thumb is that for most realistic radial pulsar distributions
and clusters, the distribution of acceleration below the maximum (2.5) is

pla) > a|R,) = 1—(2/7) arcsin (a/tpyy)- (2.8)

This gives a median acceleration of 0.71a,,,,, indicating the typical magnitude of the
second inequality in (2.6).

We can apply these ideas to the globular cluster M15 (Phinney 1992). This cluster
has one of the highest known central luminosity densities. The two pulsars closest to
its core, PSRs 2127+ 11A,D (figure 2), both have P/P = —2x 107 5. Equation
(2.6) then immediately tells us that within their projected radii 2 > 4 x 10> M pc™2.
Recent observations with Hubble Space Telescope (Lauer et al. 1991) show that in U-
band, the surface brightness of M15 is nearly constant within the central arcsecond,
and the brightness profile has a core radius of 2.2 arcsec. Individual giant stars are
too sparse to define a reliable central surface brightness in giants, but the central
surface brightness in unresolved stars is (after correcting for dust extinction 4, =
4.7E_, = 0.5 (Fahlman et al. 1985)) X, ; ,, = 1.4 x 10° L, ; pc™®. Attaching to this
a cluster-average population of giants would then give a central surface brightness
2,y =23%x10°Lg , pe® It is not an easy task to determine the positions of the
pulsars relative to the centre of the cluster as determined from the Space Telescope
image. This has been done by locating the optical counterpart of the X-ray binary,
AC 211 (Naylor et al. 1988) on the image. A vLA radio source has been identified as
its radio counterpart (Kulkarni et al. 1990), and an accurate transformation exists in
this part of the sky between vLA coordinates and pulsar timing coordinates, allowing
in this indirect way the pulsars to be localized on the optical image. Figure 2 shows
the result: pulsars A and D are respectively 0.9 and 1.2 arcsec, about half a core

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

\
\
8 \
i

a
//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

46 E. S. Phinney
L L
60 .
i ' 1
L E ]
+ [ ]
e I . ]
S [ B H ]
g G ]
40| .

335 325
RA(s) 21"27"+

Figure 2. Positions (B1950) of the single pulsars PSR2127 +11A-H in M15. PSR2127+11C is a
binary, and lies outside of the plotted area (see §5). The cross and circle respectively represent the
centre and core radius of unresolved stars in U-band light, measured by Lauer et al. (1991) (see
text). The x marks the position of the low mass X-ray binary AC211.

radius, from the optical centre of the cluster. The distance to M15 is 10.0+1 kpe
(Fahlman et al. 1985; note that Lauer et al. (1991) quote 12.8 kpe from the same
reference, but they neglected to correct the apparent distance modulus given there
for extinction). Thus the core radius of 2.2 arcsec corresponds to 0.11 pe.

If the mass density profile flattens with the same core radius as the light
distribution, then since PSRs 21274 11A and D are both projected well within the
core, we can use the lower limit to the mass surface density from the Ps to compute
a lower limit to the projected mass-to-light ratio in the core of M15:

M/Ly,=2/%, ;>18M,/Lg y, (2.9)

with a most probable value of 1.8/0.71 = 2.5. Since the U~V colour of M15 is similar
to the Sun’s, this ratio should also apply in V-band. Again assuming that the mass
distribution has the same core radius at the light, we also have a lower limit to the

central mass density: po = Z/(2r) > 2% 10° M, pe?, (2.10)

with a most probable value of p, &~ 3 x 10° M pc™®. If the core radius of the mass
density were much less than that of the U-band luminosity, the mass density at the
pulsars’ projected radii could be about twice this high.

The rougher rule of thumb (2.7) gives a lower limit to the velocity dispersion at the
position of the pulsars o(1”) x o, > 15 km s™'. More careful modelling using
Fokker—Planck models with 10 mass groups (Phinney 1992; Murphy & Phinney
1992) shows that the acceleration constraints and the light profile can only be
simultaneously fitted by models (e.g. figure 3) whose line of sight velocity dispersion
of turn-off mass stars at 0.1 pc is in the range 13-16 km s™'. Direct optical
measurements are difficult because only a few giant stars contribute most of the light
in the central few arcseconds. Thus the apparent dispersion can change dramatically
if even a single star is included or excluded. Peterson et al. (1989) derived a dispersion
o, within 1” of 25 km s™'. No reasonable model can reconcile this with the pulsar Ps.
However, Meylan et al. (1991) point out that the velocity distribution of Peterson
et al. was not symmetric about the cluster mean, and appears to have been
contaminated by one high velocity giant. Their own careful measurements over the
inner 3” give o, = 13.7 km s7, in good agreement with the models which fit the Ps.

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 3. Data points are for the globular cluster M15. Curves show properties of a Fokker-Planck
model of a globular cluster with stars in 10 mass groups representing remnants of stars with an
initial mass function dN/dm oc m~*1-? glightly flatter than a Salpeter slope. Only 10 % (1000) of
the neutron stars created were retained in the cluster. The total mass today (21.4 Ga in the
simulation) is 10°M, and the cluster began its gravothermal collapse as a Plummer model with
scale radius r, = 4.5 pc. The curves show the cluster at maximum bounce after core collapse. The
code used is essentially that described in Murphy et al. (1990). In () masses within projected radii
are shown for neutron stars and white dwarfs heavier than 1.25M (solid), 0.8 <M < 1.25M
heavy white dwarfs (dashed), and 0.63 <M < 0.8M upper main sequence, giant and white dwarf
stars (dotted). The squares are photometry of M15 (stars are Space Telescope data from Lauer et al.
(1991)), scaled by using a mass-to-light ratio appropriate for the 0.63 <M < 0.8M group and the
metallicity of M15. (b) The maximum possible line-of-sight acceleration as a function of projected
radius. The arrow shows the constraint imposed by the negative Ps of PSRs 2127+ 11A,D in M15.
(¢) The ratio of total mass within a projected radius to the mass in the 0.63 <M < 0.8, group.
The arrow shows the lower limit imposed by PSRs 2127 +11A,D and the rule of thumb (2.5). (d)
The line-of-sight integrated velocity dispersion of the 0.63 <M < 0.8 M, group. Squares with error
bars are measured velocity dispersion in M15 from Peterson et al. (1989). Caret is central dispersion
claimed by the same authors (see text). Inner square is central dispersion measured by Meylan et al.
(1991).

(a) Relaxation and equilibrium

The radial distribution of pulsars in M15 also provides a test of stellar dynamics.
The single pulsars (m, ~ 1.4 M) are about twice as heavy as the m, ~ 0.7M, post-
turn-off and upper main sequence stars which dominate the light. Although the
pulsars might preferentially be spun-up in the cluster core (e.g. by tidal capture, see
§6), their characteristic ages (table 1) greatly exceed the timescale for relaxation
through gravitational two-body encounters in the cluster core (~ 107 years).
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Table 1. Pulsars in globular clusters

(Clusters are in order of decreasing central density. Those above the line are post core collapse (pcc)
or nearly so, and also contain a bursting X-ray source (an accreting neutron star). The reference
number is followed by the first letter of the author’s last name to facilitate location in the reference
list.)

o> o° P bin?in P P/(2P)
cluster Lgy pe™ km st pulsar ms table 2 5871 years  ref.
Mi5 1x 108 15 2127+11A 110.7  single —1071%7 > 10% 1A
2127+11B 56.1 single 107171 1083 1A
21274+ 11C 30.5  binary 107173 1083 2P
21274+ 11D 4.6 single —107180 > 0% 2P
2127+ 11E 4.8 single 107187 1086 2P
2127 +11F 4.0 single 107195 > 1089 3A
2127+ 11G 37.7 single 107177 > 10858 3A
2127+ 11H 6.7 single 107196 > 10808 3A
N6624 > 3x10° (12) 1820 —30A 5.4 single 4B
1820 -30B 378.6  single 4B
N6440 3x10° (14) 1746 —20 288.6  single 5M
Ters 2% 10° (12)  1744—24A 116  binary —1071%7 > 10%%  @T
M28 1x10° 9 1821 —-24 3.0 single 107178 1075 7F
47Tuc 4x10* 12 0021 —-172C 5.8 single 8M
D-J,LM 2-5 E,J bin 9IM
M5 2% 10% 5.5 1516+02A 5.5 single <1071® > 10° 10W
1516 +02B 7.9 binary 10W
N6539 8% 103 ) 1802 —07A 23.1  binary 11D
M4 8% 10° 4 1620 —26 11.1  binary 107181 1083 12M
N6760 6x10° (6) 1908 +00A 3.6  binary 13A
M13 3x10° 8 1639+ 36A 10.4  single < 107194 > (%6 14K
1639+ 36B 3.5  binary 15K
M53 1x103 (6) 1310418 33.2  binary 14K

@ P believed (§2) to be caused by the acceleration of the pulsar in its orbit about the dense cluster
core.

" Central visual luminosity density (from Djorgovski, personal communication). The mass-to-
light ratio in the cores of low density clusters is typically ~ 1-8M /L, but can be > 10 in the
denser clusters (see §§2, 3).

¢ Central line-of-sight velocity dispersion of giant stars (~ 0.8 M ). When enclosed in (), is not
measured, but estimated from fitting a King model with a typical M/L. References are given in
Phinney (1992).

¢ The nine pulsars 0021-72D-M are only visible during moments of favourable scintillation, and
have thus proved difficult to characterize and confirm. K may be simply the third harmonic of D,
not a separate pulsar.

Thus gravitational encounters should have ample time to equilibrate the mean
kinetic energies k7' of these two types of stars (see figs 3 and 4 of Murphy et al.
(1990)). In statistical equilibrium, the number density =, of a species of
mass m; in a gravitational potential ¢(r) is given by the Boltzmann factor
n; o exp (—m; P(r)/kT). Thus at given r, the pulsar density n, oc n,(r)™»/™ should
scale roughly as the square of the density of turn-off stars.

In M15, fitting the light profile outside the core gives n, oc ¥, where

v~ 1.564+0.043(In €)%, 6> 2” in arcsec. (2.11)

Thus in the inner regions, we expect n,, oc 721, i.e. nearly constant numbers in every
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Figure 4. Histogram is the cumulative radial distribution of single pulsars in M15. The vertical
dashed line is at the core radius of U-band light. Most pulsars lie outside the core, as expected (see
text). The smooth solid line is the distribution of neutron stars in the Fokker—Planck cluster model
illustrated in figure 3.

Figure 5. Cumulative distribution of gravitational jerks of 10° stars drawn from a centrally
concentrated distribution (see text) in a cluster whose core contains about 6000 perturbing stars
(specifically simulated is a King model cluster with W, =6 and 10° stars in total pygoC o},
Oxs = 0/ 2). R, <05 ----- ,06<R, <15, —— R, > 15.

logarithmic interval of radius. It is thus not surprising that five of the seven single
pulsars in M15 are outside the core (see figures 2 and 4; we omit the binary PSR
2127 +11C, both because it is twice as heavy, and because its formation involved
ejection onto an orbit from which it has not yet been relaxed; see §5). In figure 4, we
compare the radial distribution of pulsars with that of the 1.4 M, mass group in the
same Fokker—Planck simulation which fits M15 in figure 3. They are comfortingly
similar. Note that it would not be surprising if one of the next few single pulsars
discovered in M 15 lay beyond 10 core radii (22” = 1 pc). Clusters with large core radii
generally have steeper surface brightness profiles outside their cores than do highly
concentrated (‘post core collapse’) clusters like M15. Most of their pulsars in
equilibrium should then lie within their cores. In low density clusters, however, the
relaxation time can exceed the pulsar ages, so in those the radial distribution may be
determined more by the formation process than by statistical equilibrium.

Deep in a cluster’s potential well, the fact that all mass species follow a Boltzmann
distribution means that if one species of mass my dominates the density over a wide
range of radius, the density profile of that species must approximate an isothermal
sphere, pq oc 72, Thus stars ¢ of higher mass than my must have steeper density
profiles, and lighter stars have a shallower density profile. In M15, (2.11) shows that
the 0.7 M, turn-off stars have a shallower profile within 1 pe, and figure 4 shows that
the pulsars have a steeper profile. We infer that at » < 1 pc, the mass density in M15
is dominated by stars of intermediate mass (~ 1M, which must be heavy white
dwarfs). This is indeed the case in the model of figure 3a. And since these are dark
remnants, it nicely explains the high central mass to light ratio (see figure 3¢). To
make the required numbers of heavy white dwarfs, standard stellar evolution
requires that the initial mass function in M15 have been at least at flat as the Salpeter
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50 E. S. Phinney

one, appropriate to Galactic star formation (Massey & Thompson 1991), dN/dm oc
m~*% between 0.7 and the M > 3M stars progenitors of heavy white dwarfs.
Extrapolating such a slope to the masses of neutron star progenitors predicts that at
least 10* neutron stars were formed in M15 (though of course many could have
escaped at birth).

3. Jerk, P and local density

Differentiating (1.2) twice, and using 7, = P,/(2P,) and n,=2—P,P,/P? (the
intrinsic braking index n, = 3 for a vacuum magnetic dipole model; young pulsars
have measured 2 < n, < 3), we have

P _@2-m) an 2 2] a VL 4
P 47 = +TO[ ¢ +cD + +dt cD (8.1)

where a = a,—a,. The second term dominates the remaining terms in star clusters,
whose crossing times are much less than the characteristic ages of their recycled
pulsars and their orbital periods in the galaxy. It also generally dominates the first
term. Thus all pulsars in globular clusters should have P/P = (1/c) da,/dt. This effect
was first pointed out by Blandford et al. (1987), after the discovery of the first
globular cluster source, but before it was shown to be a pulsar.

If we consider a pulsar in the core of a star cluster, where p(r) & p,, then the mean
field acceleration is a,,, = §nGp,r. Differentiating and taking the line-of-sight
component then gives the mean field contribution

(P/P)s = §1Gpyv,/c = 6 X 1072 pyv;, 872, (3.2)

where p, = 109 pg M pc™® and v, = 10v,, km s7'. From equation (1.1), /P can be
measured to 6 x 107*® in about a year of timing with 1 us residuals. So this effect
should be measurable, at least in the denser globular clusters.

The interpretation of a pulsar’s jerk, however, is complicated by the fact that its
nearest neighbours make a contribution comparable with that of the mean field. The
exact expression for the « component (o runs over z, y, z) of the pulsar’s jerk is

toa = SOU g, - ST (3.3
' rpl lri rpl

The pulsar’s nearest neighbour has a median |r, —r | ~ (p/M;)73, s0 its contribution to
(3.3) 18 dy ,,,, ~ Gp(v;—v,),, of the same order as the mean field contribution (3.2). To
compute the distribution of jerks a given pulsar would feel thus requires Monte Carlo
simulation. We have carried out such simulations, directly summing equation (3.3)
for pulsars placed in self-consistent King model clusters. In the simulations,
following the discussion of §2, we have drawn the pulsars from a density distribution
which varies as the square of that of the perturbing stars, and a velocity distribution
with variance half that of the perturbing stars. In figure 5 we show the resulting
cumulative distribution of jerks. This distribution is invariant to scalings of the total
number of stars in the cluster and the cluster concentration, which keep the number
of stars in the core constant. The simulation shown is roughly correct to M15. To
estimate the expected P/P for PSRs 2127+11A,D, we take p(0.57,) ~

3x10° M, pe™ from equation (2.10). Then figure 5 gives a medlan expected P/P =
4x107% _2 , and 80 % of the time /P < 1.4 x 10726, Note that the timescale for /
to change is that for the nearest neighbour to ohange its position, of order
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Pulsars as probes of newtonian dynamical systems 51

oY po/M,)5 ~ 10% pg3 vyl years, or about a century for pulsars in the core of M15.
The nearest star passing by a pulsar typically dominates the third and higher
derivatives of P(t). Measurement of these higher derivatives thus would allow one to
solve for the mass function and parameters of its hyperbolic orbit.

4. Stellar evolution

Stars begin their lives by fusing hydrogen to helium in their central regions. As
time goes on, a core region develops in which all the available hydrogen has been
exhausted. As the central heat source wanes, the outer layers of the star are
compressed by gravity until fusion begins in the regions outside the core (which
initially were at too low a temperature and density to have significant fusion). In
stars of mass M < 2M, the growing core is supported by electron degeneracy
pressure, and hence becomes smaller as the core mass M, increases. The gravity at the
core’s surface becomes enormous, so hydrostatic equilibrium implies that the
pressure gradient in the hydrogen burning layer at its surface is extremely steep.
Consequently the envelope above the layer has very little effect on the layer’s
temperature, density, and rate of hydrogen fusion (and hence on the luminosity of
the star). As the core becomes smaller and more massive, hydrostatic equilibrium in
the hydrogen-burning shell requires its temperature to increase. Because of the steep
temperature dependence of nuclear reaction rates, this means that the luminosity of
the burning shell increases rapidly with core mass (a nice discussion may be found in
Refsdal & Weigert (1970)). For the reason mentioned above, this relation L(}M ) is
almost independent of the properties of the overlying envelope.

The large temperature gradient above the shall also makes the envelope above the
hydrogen burning shell fully convective up to the photosphere of the star. Since the
specific entropy is kept almost constant by convection, equating p(7') for the
isentropic envelope to the photospheric pressure p ~ G(M,+M,, )/ (R*k(p, T.s)) gives
a unique solution for T (R, M., M,,,), the so-called Hayashi track. Since the stellar
luminosity L oc R*T%,, this is equivalent to a unique solution for R(L, M , M, ). Here
Kk is opacity, and M, is the mass in the envelope above the hydrogen burning shell.

env

This relation applies while M., > 0.04(M,/0.2M,)~*> M . When the envelope
mass drops below this limit (a few times the mass of the burning shell), the envelope
begins to shrink. Combined with the L(} ) relation, this gives a unique relation for
R(M, ~ M) at the moment that the envelope of the giant collapses at the end of mass
transfer. If the giant at this moment is just filling its Roche lobe (radius R;) in a
binary, as it must be for stable mass transfer, its radius R = R, and mass M ~ M,
determine the orbital semi-major axis and hence, from Kepler’s third law, the
orbital period P,. This P, (M) relation, whose importance was emphasized by Refsdal
& Weigert (1971) and by Joss et al. (1987), is plotted in figure 6. The smooth solid
curve is the fitting function of eq. (10) of Joss et al. (1987). The slightly irregular
solid and dotted curves near it are stellar models from Sweigert & Gross (1978).
Plotted also are the companion masses and orbital periods of the binary pulsars
listed in tables 2 and 3 which have small orbital eccentricities.

The giant companions to globular cluster sources have much lower abundances by
weight Z of elements heavier than helium (‘metallicities’) than do those of Galactic
pulsars. Hence their P, (M) should be compared with the dashed curves in figure 6,
not to the solid ones. The fact that at a given core mass, low metallicity giants are
smaller (hence smaller P, when Roche-lobe filling) is due in large part to the fact that
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Figure 6. Predicted relation between core mass (i.e. final white dwarf mass) and orbital period for
binaries containing a 1.4M , neutron star, in which a giant star of the given core mass fills its Roche
lobe. The curves (described in text) were computed for stars of different metallicities Z. The dotted
curves are for Z appropriate for globular clusters. The filled circles show the mass (or allowed mass
range) of the companions of binary pulsars in the Galactic disc which have nearly circular orbits.
The open circles with dotted mass ranges represent companions of binary pulsars in globular
clusters. See text for discussion of NGC6539 and PSR0655 + 64.

the Hayashi track depends on the photospheric opacity. Lower metallicity gives a
lower opacity, and a higher photospheric pressure. This in turn means that R at given
L is lower for lower metallicity. However, the models (Sweigert & Gross 1978) also
show a small additional effect in the same direction from the fact that the low
metallicity stars also have smaller luminosities at a given core mass.

Most pulsars in circular binaries have companions with masses and periods
compatible with the predicted relations. This is true of pulsars both in clusters and
in the galactic disc, suggesting that the circular binaries did go through a phase
in which the pulsar’s companion filled its Roche lobe and spilled matter onto the
pulsar. However, two binary pulsars clearly do not fall on the Roche lobe P,-M,
relation. The first is PSR0655+ 64. Its companion is so massive that conservative
mass transfer would have been dynamically unstable (Hjellming & Webbink 1987),
and the neutron star would have rapidly spiralled into the giant’s envelope. Friction
would simultaneously remove orbital angular momentum and eject the envelope.
Thus its high mass and short orbital period are not surprising, though the physics of
spiral-in are poorly understood. The second is PSR1802—07A in the globular cluster
NGC 6539, whose orbit is much too small to have contained a giant with core mass
equal to the companion’s mass. The orbit is also very eccentric, e = 0.22, suggesting
either that it was never circularized (companion never filled its Roche lobe), or was
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Table 2.'Binary radio pulsars in globular clusters
(Clusters are in order of decreasing central density, as in table 1.)

r £, fan: My
cluster pulsar ms d e Mg M, ref
Mi15 2127+11C 30.5 0.33 0.68 0.153 1.3 2P
Terb 1744 —24A 11.6 0.08¢ <1073 3.22x10™*  (0.09) 6T
47Tuc 0021 —72E 3.5 2.22 <0.1 1.7x107® (0.16) 9M
47Tuc 0021 —72J 2.1 0.12¢ < 0.03 4.9%x1078 (0.02) M
M5 1516+ 02B 7.9 6.8° 0.13» 6.5x10™ (0.11) 15K
N6539 1802 —07A 23.1 2.62 0.21 9.5%x1073 (0.30) 11D
M4 1620 —26 11.1 191.44 0.025 8.0x1073 (0.28) 12M
N6760 1908+ 00A 3.6 0.14° 0.0° 2.9%x1078 (0.02) 16D
M13 1639+ 36B 3.5 1.26° 0.0° 1.81x107%  (0.16) 15K
M53 1310+18 332  255.84 < 0.01 9.79x107®  (0.31) 14K

* Mass function f(M) = (M, sin @) (M,+M,,)%.

® Provisional parameters: no phase-connected solution.

¢ Mass of pulsar’s companion (when in parentheses, tabulated value is M, sin 4, computed from
the mass function f in the preceding column assuming a pulsar mass of 1.4M ).

4 Pulsar eclipsed when behind companion (or its wind).

shrunk and made eccentric by encounters with passing stars. As described in the next
two sections, the first possibility is more likely.

S. Effect of passing stars on binaries

One clue to the origin of the binary pulsars in globular clusters is provided by the
eccentricities of the binary orbits. Since the pulsars generally have characteristic
ages much less than the 2 10'° years ages of the globular clusters in which they lie,
they must recently have acquired angular momentum by accretion. The remarkably
low masses of the binary pulsars’ companions (table 2) suggest that the companions
supplied the accreted matter. While the neutron star is close enough to its companion
to pull matter from its surface, the neutron star will also exert strong tidal forces on
the companion. As described in §7, if the orbit is initially non-circular, the resulting
time-dependent tide will dissipate energy in the companion, circularizing the orbit.
The Galactic binary pulsars with low-mass white dwarf companions have clearly had
their orbits circularized in this manner (see table 3 and §7). By contrast, many of the
cluster pulsars have much larger eccentricities (see table 2) than those of the
seemingly similar Galactic counterparts. Furthermore, the ratio of numbers of single
to binary recycled pulsars is much larger in globular clusters (17:11) than in the
Galactic disc (1:12), with the ratio being especially high in the clusters with the
highest central densities. This suggests that passing stars may be influencing the
orbits of cluster pulsars after the completion of the mass transfer which led to their
reactivation.

() Eccentricities

Consider a perturbing mass M, which passes at velocity ¥, within a distance R,
of a binary whose components M,, M, are in a circular orbit of radius a < R,
with orbital period 2n/€,. For simplicity, we consider only encounters in which
all bodies orbit in a single plane. We let u = M, /(M,+M,), and define a parameter
A=0,R,/V,. If A <1, then the encounter lasts much less than one orbital
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54 E. S. Phinney

Table 3. Binary and millisecond pulsars in the Galaxy

(The horizontal lines divide the pulsars into five groups, depending on their probable evolutionary
history. In the first group, 1259 —63 has a visible Be star as companion. The remaining pulsars in
that group have high mass, probably neutron star (though 1820 —11 may be lower main-sequence
(Phinney & Verbunt 1991)) companions in eccentric orbits, and could have originated from binaries
composed of two massive stars. The second group has a high mass white dwarf companion, which
must have formed in a massive red giant much larger than the current orbit, implying that the
neutron star spiralled into, and ejected the giant’s envelope during unstable mass transfer. The
third group has low mass white dwarf companions in circular orbits, which could have formed in
stable accretion from low mass companion stars filling their Roche lobes. The residual eccentricities
are discussed in §5. The fourth group consists of systems with companions less massive than the
core mass (~ 0.16M) of the least massive star to have evolved off the main sequence in the age
of the universe. Their mass transfer must have been driven by something other than nuclear
evolution of the companion: e.g. gravitational radiation, or loss of angular momentum in a
magnetic wind. In the fifth group, 1937 +21 is single, and 1257412 seems to have a planetary
system. These pulsars seem to have destroyed the stellar companions which provided the angular
momentum to spin them up.)

P P, fane e (B\' P/2P)
il il og. [ =
pulsar ms d e M, My e years ref.

1259—63 478 >10° > 0.97 ~ 10 ~ 20 17J
1820—11 2798 358 0.794 0.068 (0.8) 11.8 3x10° 18L
1913 +16 59.0 0.32 0.617 0.132 1.39 10.4 1x10% 19T
1534 +12 37.9 0.42 0.274 0.315 1.36 10.0 2x10% 20W
2303446 1066.4 12.3 0.658 0.246 1.5 11.9 3x 107 21L
0655+64  195.7 1.03 7x107¢ 0.071 (0.8) 10.1 5x10° 22J
0820+02 864.8 1232 0.0119 0.0030 (0.23)" 11.5 1x10% 23T
1953 429 6.1 117 0.00033 0.0024 (0.21) 8.6 3x10° 24R
J2019 424 3.9 76.5 0.000111 0.0107 (0.37) 8.7 1x10° 25T
1855 +09 5.4 12.3 0.000021 0.0056 0.23 8.5 5x10° 26R
1831—-00  520.9 1.8 < 0.004 0.00012 (0.07) 10.9 6x 108 23T
1957 +20 1.6 0.38° <4x107° 5x107¢ 0.02° 8.1 2x10° 27R
1257412 6.2 67,98 0.02,0.02 5,3x107¢ 4,3M 8.9 8 x 108 28W
1937+ 21 1.6 sing. 8.6 2x 108 29T

® Orbital eccentricity.

® Mass function f(M) = (M, sin ¢)* (M,+M,,)"2.

¢ Mass of pulsar’s companion (when in parentheses, tabulated value of M, is estimated from f(M)
assuming a pulsar mass of 1.4M, and inclination 7 = 60°, the median for randomly oriented
binaries).

¢ B given is dipole surface field, calculated as if the pulsar were an orthogonal vacuum rotator.
Higher multipoles could be much stronger. :

¢ Pulsar eclipsed when behind companion (or its wind).

! Optical radiation from the white dwarf companion is observed; its temperature combined with
the theory of white dwarf cooling confirm the age estimated from P/(2P) (except for 1957 + 20s
companion, which is heated by the pulsar’s relativistic wind).

period, and can be viewed as making an impulsive change to the velocities of the
stars in the binary. This induces a small eccentricity e, in the initially circular orbit:

e = pA(a/R)* /(3 sin® Oy +4 cos® 0,) + O([uA(a/R,)??), A <1, (5.1)

where 0, is the angle, at the moment of closest approach, between the line joining the
two stars in the binary and the line joining the binary to the perturbing star. In this
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Figure 7. Eccentricity e, induced by a perturbing star M, passing at speed V, by a circular binary
star system. See text for meaning of symbols. The points are the result of numerical integration.
The curves are the asymptotic analytical results given in the text. x, R, = 20a, retrograde; o,
R, = 40a, retrograde; ——, [2A+6(}n): As]e™!; m, R, = 20a, prograde; ----- , [2A4+ Gr)i Ad] e

impulsive limit, the induced eccentricity is the same for prograde and retrograde
encounters.

If A > 1, then the encounter lasts for many orbits of the binary. The slower the
encounter, the more nearly the adiabatic effects of the perturbing mass on the binary
orbit average to zero. In this limit, a calculation by N. Murray (1990, personal
communication) shows that the induced eccentricity is independent of 6, but is
larger for retrograde than for prograde encounters, and is given by

ep = 6u(a/R,) (mjEiaie™, A> 1, retrograde, (5.2)
for retrograde encounters, and
ey = uwa/R,)? 3n)iXie™ = (1/6A)¢; ror, A > 1, prograde, (5.3)

for prograde encounters when the binary and perturbing body both orbit in the same
sense. Simply adding the forms of ¢, in the impulsive and adiabatic limits gives an
excellent fit to the results of numerical integrations of the three-body problem, as
shown in figure 7.

To apply these results to close binaries in globular clusters, we note that such
binaries will have orbital velocities much larger than the velocity dispersion of single
stars in the cluster. Thus the orbits of stars whose passages induce small eccentricities
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are nearly parabolic, and the encounters adiabatic in the sense defined above. We
make the reasonable assumptions that the <{e;) averaged over encounters from all
incoming directions is approximately the geometric mean of that for prograde and
retrograde encounters, and that equations (5.2), (5.3) can be extended to parabolic
encounters by replacing A by the ratio of the binary angular velocity to that of the
perturber at pericentre:

AR (M 2(M, + D) (p/ (5.4)

where p is the separation at pericentre, and M, = M, +M, is the mass of the binary.
Then for parabolic encounters, e; ~ M, /(M,+M,) exp [—A], and we find that the
approximate cross section for encounters with stars of mass M,, and velocity at
infinity »_, to induce an eccentricity larger than e; is

_2nG(M+M,)a 2(MD+MD))% —ln (() My +M\
v? M, M :

00 D

o(>e) (5.5)
This is in excellent agreement with the cross sections computed by Monte Carlo
simulation by Rappaport et al. (1989, eqns 8—10), except for ¢, < 3 X 1073, where their
fit gives a cross section about a factor of 2 larger, perhaps because numerical
inaccuracies or premature truncation of distant flybys led them to overestimate the
eccentricities induced by distant encounters. As we show in §7, however, isolated
circularized binaries can have residual eccentricities this large, so observed
eccentricities < 107 in pulsar-white-dwarf binaries cannot unambiguously be
assigned to the effects of passing stars. Cross sections at this level are thus not very
interesting anyway.

Consider a globular cluster’s core, where the one-dimensional velocity dispersion is
10v,, km s7! and the density of M, = 0.7M stars is 10*n, pc™. For a M, = 1.6
binary of orbital period Py, d, averaging the cross section (5.5) over a maxwellian
velocity distribution gives a rate of encounters inducing eccentricities exceeding e,

{no (> e) v,y =5x1072n, vl"olP%ay[—ln (1.4e)fa™t, (5.6)

in excellent agreement with the numerical (Monte Carlo) curves of figure 1 in
Rappaport et al. (1989). Note that (5.6) and (5.5) apply to nearly parabolic
encounters, i.e. in a typical (v, ~ 1) globular cluster to binaries with 7, < 10®d.
Encounters inducing small eccentricities in larger binaries are more nearly the
straight-line encounters described by equations (5.1)—(5.3), but such binaries are soft
and easily ionized (see below), and so unlikely to occur in nature.

Using equation (5.6) and the data in tables 1 and 2, we can compute the timescales
T.e = 1/{mov) on which passing stars would have given each of the cluster binary
pulsars its observed orbital eccentricity. We assume that each Ly of cluster
core light has two stars associated with it (lower main sequence and white dwarf
stars have much mass but little light). Of particular interest are PSR1620—26 (M4 :
Too.0p5 = 10° years; P/2P = 10%3 years), PSR1516+02B (M5: 7_, ,, = 10°7 years;
P/2P > 10° years) and PSR1310+ 18 (M53: 7_, ,, = 10%8 years). Thus it is conceiv-
able that these pulsars were recycled during ordinary mass transfer from a low mass
giant (as suggested by their positions near the M P, line; see §4 and figure 6),
during which their orbits were accurately circularized (§7), and a passing star
subsequently gave them their observed eccentricity. However, this seems quite
unlikely for PSR1802—07A (NGC 6539: 7_ ,, = 10'%% years), which the reader
will recall was also unusual in lying far from the M P, line (figure 6) for Roche
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lobe-filling giants. Since the timescale for exchange into a binary with such a final
state is considerably larger even than 7_ ,,, this suggests that PSR1802 —07A had a
quite different origin, as described in §6.

(b) Exchange and tonization

Sometimes a cluster star will happen to pass even closer to a binary, and violent
interaction rather than gentle eccentricity-inducing perturbation takes place. The
violent interactions can include physical collision between stars (§6), but more
common are exchange of stars, hardening (increase of the binary’s binding energy),
and ionization (dissolution of the binary).

In this context it is useful to distinguish hard binaries (those whose binding energy
—GM,M,/(2a) exceeds the mean kinetic energy 3m,of of the single stars in the
globular cluster, where o is the one-dimensional velocity dispersion of stars of mass
mg) from soft binaries (whose binding energy is less than 3m,o}). Analytical
arguments (Heggie 1975) and numerical simulations (Hut 1983; Sigurdsson 1991)
show that encounters make hard binaries harder (by ~ 20 % per close encounter, on
average), but make soft binaries softer (eventually ionizing them). This is easily
understood as a consequence of the tendency to equipartition of energy and the
negative specific heat of self-gravitating systems. The velocities (hence ‘tem-
perature’) of the stars orbiting in a hard binary are higher than those of stars in the
surrounding cluster; therefore collisions transfer energy (‘heat’) from the binary to
the cluster. The loss of energy from the binary makes the binding energy more
negative. Conversely, the stars in a soft binary have lower velocities (‘temperature’)
than the surrounding cluster, so collisions transfer energy to the binary, making its
binding energy less negative (hence eventually positive).

This thermodynamic point of view also explains another important result of
numerical simulations. Namely, when the three stars involved in a close three-body
encounter with a hard binary have differing masses, there is a strong tendency for the
two heaviest ones to be the ones left in the final binary (Sigurdsson 1991). Thus, for
example, if a neutron star or a heavy white dwarf encounters a binary containing two
main sequence stars, it will preferentially be substituted for one of the lighter stars.
And if a neutron star encounters another neutron star with a main sequence or giant
companion (e.g. the low mass X-ray binary AC211 in M15 (Naylor ef al. 1988)), it will
nearly always eject the light companion, leaving a double neutron star binary. This,
almost certainly, is how the neutron star binary PSR2127+411C formed in M15
(Phinney & Sigurdsson 1991), since the young (1082 years) pulsar cannot possibly
have been spun-up by its companion, degenerate for at least 10'° years!

Confirmation that this is the case comes from the recoil of exchange encounters
and the position of PSR 2127+ 11C, 26 core radii from the centre of M15. The recoil
occurs because exchanges, like all close encounters, harden a hard binary. The
binding energy lost must be carried away by the escaping third star, which thus
leaves with much more energy than had the incoming star. If we work in the centre-
of-mass frame of the three bodies, it is evident that the momentum of this high speed
escaping third star must be balanced by an equal and opposite momentum of the
binary (the recoil). For most hard binaries in globular clusters, the third star will be
ejected from the globular cluster altogether, but the binary, being heavier, recoils
with lower velocity and so can remain bound. The distribution of recoil velocities in
exchange encounters between a neutron star and a binary like AC211 (F, = 8.5 h)
resulting in a double neutron star binary like PSR2127+411C are shown in figure 8.
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Figure 8. Differential cross sections of binary recoil velocity for flybys and exchanges in which a
passing neutron star encounters a binary containing a neutron star and a 0.56 M, main sequence
star (y = (v /mad) (do(X)/dv,.,) (v;,/v.)%). The final binary consists of two stars of mass 1.0M, ; the
expelled star has mass 0.4M,. In the application envisaged here, M, = 1.4M, appropriate for
neutron stars or heavy white dwarfs. The initial binary is circular, with semi-major axis a,;
vi=GM M,M,+M,+M,)/(a,M;M,+M,)) is the relative incoming velocity for which the system
would have zero total energy. v, =273 km s if the initial period P,=8h. Note that the
total cross section for heavy star exchanges which leave the light star in the binary is smaller
by a factor of 6 than that which leaves the two neutron stars bound. v, /v, €[0.05, 0.15],
—, X: (L,L2)+@3)~>(1,2)+3); ——, X: (1,2)+B)~>(1)+(2,3); ——, X: (1,2)+(3)~
(1,3)+(2).

Figure 9. (a) The turning points of the orbit of a body ejected at speed v,,, from radius r; in the core
of a single-mass W, = 12 (¢ = 2.74) King model cluster of core radius r, and line-of-sight central
velocity dispersion o. The form of the curve is independent of r, and W, for r/r, < 100. For PSR
2127+ 11C to reach its projected distance of 2.7 pe from the core of M15, it must have been ejected
at 2 50 km s7. (b) The timescale for dynamical friction to carry back to the core a star or binary
system of mass m, ejected with speed v,,, from radius r,. The form of the curve is independent of
ro for r; 2 r,. The friction time on the ordinate is labelled for a heavy body of 107 the cluster mass,
but scales inversely as the mass of the heavy body. (@) ——, Apocentre, radial recoil; —-——
apocentre, tangential recoil; ----, pericentre, tangential recoil. (b)) ——, Radial recoil; -—-—
tangential recoil.

i

B

About 30% of such exchanges have the 2 50 km s™ recoil required to eject the
binary to its observed position in M15 (see figure 9a). Note that in such an exchange,
there is substantial recoil even if the initial and final binaries have the same semi-
major axis or orbital period, since the mass of one of the stars in the final binary and
hence its binding energy, is much greater than in the initial one.

Exchange binaries are generally highly eccentric, with median e ~ 0.7. A rough
rule of thumb for the median recoil velocity of the final binary in exchange
encounters in which the lightest star M, is ejected is

M, aM, +Mf)) M, _1 .
~ : . =15 sa,% k L 5.7
Vrec 20, +Mf)/( @ M, +Mf)§aAU m s (5.7)

2

where a; = a,; A.U. is the semi-major axis of the pre-encounter binary, and in the
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second equality the masses are in solar units. Thus recoil in exchanges into binaries
with e < 0.1 A.U. are sufficient to send the binaries into orbits extending well outside
the core of a globular cluster.

Once ejected, the binary (being heavier than the mean stellar mass in the cluster)
is dragged by dynamical friction back to the core of the cluster. After ejection, the
binary’s orbit in the cluster is very elongated, with pericentre near the point of
ejection (almost always in the dense core). The friction time, shown in figure 956
(which, but for a printing error, would have been figure 1 of Phinney & Sigurdsson
(1991)), is determined largely by the density at pericentre. Perpendicular velocity
kicks from cluster stars passing on the outer reaches of the orbit can shift the
pericentre of the nearly radial orbit of the ejected body, creating a distribution of
sinking times with a tail extending to times much larger than indicated by the curve,
which neglects such kicks. The width of this distribution of sinking times becomes
significant for orbits with initial apocentric distances r, more than 4(M,, +{m)/{m)
times the initial pericentric distance, where {m) is the mean mass of cluster stars
encountered near r,. The timescale for the binary pulsar 21274 11C to sink within
M15 is ~ 10%(r,/0.1 pc) years, comparable with both its characteristic age and its
lifetime against gravitational radiation. The timescale for the binary pulsar
1744 —24A to sink within Terzan 5 is 2 1 x 108 years. Neither system’s pericentric
distance is likely to have been shifted substantially. Ejected pulsars are most likely
to be found near the half-mass radius (3.5 pe for M15): convolution of figure 9a and
8 shows that few pulsars will be found beyond the half-mass radius (327,), since only
a very narrow range of ejection velocities have apocentres there. Few will be found
inside the half-mass radius, since friction will there rapidly drag them back to the
core.

6. Pulsars in globular star clusters

Globular clusters are 10-20 Ga old, and contain no interstellar medium from which
stars could form, nor can they capture stars from the Galaxy. Thus the most massive
single star on the main sequence has M ~ 0.8 M. Neutron stars, and young pulsars,
are believed to be formed in supernova explosions of 2 10, stars. Hence there
should be no pulsars with characteristic ages much less than 10 years in globular
clusters. Table 1 shows that there are many. These relatively young pulsars must
then either be old neutron stars recently spun back up to short periods by accretion,
or be neutron stars created recently by accretion-induced collapse (a1c) of a massive
white dwarf. In either case, the formation of the pulsar must have been preceded by
a phase of accretion onto a neutron star. Accreting neutron stars appear as X-ray
sources. There is consequently a close connection between X-ray burst sources and
pulsars in globular clusters.

In globular clusters, X-ray burst sources and recycled pulsars are roughly 100
times more abundant per unit mass than in the Galactic disc (Johnston ef al. 1992).
It is quite out of the question that neutron stars be 100 times more abundant in
globular clusters; in fact § 2 suggests that their abundance is about the same as in the
Galaxy. Thus somehow neutron stars (or heavy white dwarfs suitable for arc) in
globular clusters must be 100 times more likely to end up accreting, i.e. they must
capture their own binary companions. The high density of stars in globular clusters
suggests several possible capture routes.

Hills (1976) first proposed the idea that exchanges with primordial binaries in
dense stellar systems would lead to an unusually large population of compact objects
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in binaries. However, the failure of Gunn & Griffin (1979) to detect a single binary
in their radial velocity survey of M3 led most theorists to assume that there were no
primordial binaries in globular clusters. In the absence of primordial binaries, the
only way for a single neutron star to collect matter to accrete (to make an X-ray
source, or to spin up a dead pulsar) was through tidal capture (Fabian ef al. 1975;
McMillan et al. 1987; Verbunt et al. 1987).

The rate at which neutron stars in a globular cluster of central velocity dispersion
100, km s7! tidally capture companions is
Py N

opa1ans (6.1)

- -8 -1
‘%T2 7 X 10 a 106LOV pc_3 10 103’

proportional to the number of neutron stars and the density of ordinary stars in the
cluster core. Since all globular clusters have about the same mass, and hence
presumably about the same number of neutron stars, the rate of tidal capture should
scale as the central density of the globular cluster. The rate (6.1) seems adequate to
explain the several ~ 10®year-old pulsars in the dense globular cluster M15 (table 1).
All but two of the twelve X-ray sources in globular clusters are found in clusters of
the highest central densities (Predehl et al. 1991), consistent with the scaling with
cluster density expected if all of them had formed by tidal capture.

Thus it was a considerable surprise that even very low density clusters such as M13
and M3 (see table 1) should be found to contain pulsars at almost the same rate as
100 to 1000-times denser clusters (Johnston et al. 1992). These evidently cannot be
forming by tidal capture. At about the same time, however, primordial binaries were
discovered in globular clusters (Pryor et al. 1989). This led to a reconsideration of
Hill’s (1976) suggestion that exchange into primordial binaries could be responsible
for some of the pulsar recycling. This process is particularly important for neutron
stars, whose apparently large velocities at birth would eject them from most binaries.
Thus, while white dwarfs might exist in primordial binaries, few neutron stars are
likely to (galactic pulsar statistics suggests that fewer than 1 in 10® are recycled in
binaries). A few exchanges can thus have a significant effect on the number of
neutron stars in binary systems.

The cross section for exchange into a binary of semi-major axis ¢ = a,y; A.U. is
~ 100a,y times the two-body tidal capture cross section. The relative rates of
exchange and tidal capture thus depend on the fraction of binary stars in the cluster
core (where should lie most of the neutron stars; see §5), and on the semi-major axes
of those binaries. Binaries, being heavy, will initially tend to sink to the core of a
globular cluster. Thus the binary fraction in the core can be substantially higher than
the cluster-averaged fraction of ~ 10% (Pryor et al. 1989). Even allowing for
ionization of very wide binaries (§5), a distribution of binary semi-major axes similar
to the galactic one would then lead to a rate of exchange of neutron stars into binaries
some 10-30 times the rate of two-body tidal capture. The locations of the binary
pulsars in the globular clusters M53, M4, M5, 47 Tuc (E), and M13 near the core-mass
period relation for Roche lobe overflow (figure 6) suggests that they may have formed
in this way.

In globular clusters with core luminosity densities exceeding

py > 1.5x10° Ly peazy; oy, (6.2)

primordial binaries with semi-major axes greater than a will typically have
undergone encounters with other stars intimate enough to have exchanged stars or
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changed the orbital parameters of the binary significantly. In such clusters,
therefore, the population of binaries with orbital periods longer than P, ~ years will
no longer be truly ‘primordial’, but its stellar composition, and semi-major axis and
eccentricity distributions will be determined in large part by past interactions with
field stars and other binaries. Numerical simulations (Gao et al. 1991; Heggie &
Aarseth 1992) show that during the initial gravothermal collapse of a cluster’s core,
the central density increases so rapidly that the binaries do not have time to be
significantly hardened. Thus {now) for binary-hardening encounters increases, until
enough energy is being released by these encounters to halt core collapse (which was
caused in the first place by the conduction of kinetic energy from the core of the
cluster to the edges of the cluster kept ‘cold’ by escape of stars). The cluster then
remains at a roughly constant central density ~ 10° M pc™®, ‘burning’ its binaries
until so many of them have been ejected by recoil (§5) that they can no longer supply
the energy needed to prevent further core collapse. Clusters at the onset of the
‘binary burning’ phase of their lives should have the largest total rate of binary
encounters, and a potentially enormous rate of pulsar recycling. The clusters 47 Tuc
and Ter 5 both have short apparent collapse times, suggesting that they are in such
a phase. This may explain the extraordinarily large number of bright pulsars and
pulsar-like radio sources they respectively contain.

As described in §5, exchanges typically remove only a small fraction < 25% of a
binary’s binding energy, and typically lead to ejection of the lightest star. Thus
exchanging a light main sequence star J, or white dwarf for a neutron star M, in a
binary means that the final semi-major axis is larger than the initial one by a factor
~M,/M,> 1. This increases the binary’s cross section for subsequent close
encounters. Many exchanges are not simple single-pass events, but are complicated
resonant interactions like the one shown in figure 10. It is not surprising that during
the many passes the three stars make at each other during such an encounter, there
is a substantial probability for a tidal or direct collision. Thus a large fraction of all
close encounters between binaries lead to tidal capture or collisions. Since binaries
can be hundreds of times bigger than the individual stars, this means that a
population of stars in binaries will have a much higher rate of tidal captures and
collisions than the same population of stars at the same density would have if all the
stars were single. This three-body tidal capture cross section

g X B(a/R) 0. (6.3)

The exponent 1 —vy & 0.3 when the stars (one or two of which have radius R > 1072 a)
all have masses comparable within a factor of three and v, < 0.5v,, (Sigurdsson 1991).

In about half of all three-body encounters leading to collisions, the bystander star
is unbound from the merged collision product. If the neutron stars accretes some of
the collisional debris (cf. Krolik et al. 1984), this is then a mechanism for making
isolated recycled pulsars in globular clusters (Verbunt et al. 1987). This is also an
attractive way to explain the X-ray source in the low density globular cluster NGC
6712. The optical counterpart of this X-ray source has My ~ 5.6 (Auriere & Koch-
Miramond 1991), much fainter than a giant or subgiant, and nearly 100 times fainter
than the average low-mass X-ray binary (Van Paradijs 1983), suggesting that it did
not form by exchange followed by ordinary nuclear evolution of the companion. Yet
ordinary tidal capture of a main sequence star is quite improbable (though not
entirely out of the question, given that only 1 in ~ 50 low density clusters contain
X-ray binaries).
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Figure 10. A resonant three-body encounter. A neutron star (heavy line) is incident from the right
on a binary containing two main sequence stars (spirals on the left). After several close passages,
the lighter of the two main sequence stars is ejected toward the upper left and the binary, now
containing the neutron star, recoils in the opposite direction. If the initial orbit (scale-free in this
point-mass simulation) has been smaller than 0.5 A.U., the neutron star would have collided with
the lighter of the main sequence stars during the encounter.

In the other half of the collisional three-body encounters, however, the bystander
star remains bound in a highly eccentric orbit to the collision product. Tidal
dissipation (§7) subsequently reduces the orbital period and eccentricity of the
bystander. If the collision product becomes a recycled pulsar, this is then a
mechanism for making recycled pulsars in short-period eccentric binaries, such as
PSR1802—07A in NGC 6539.

7. Residual eccentricities of tidally circularized orbits

The orbits of Galactic pulsars in binary systems are not circular. Our interest here
is in the Galactic pulsars with companions of low mass, 0.2-0.5M ;. These have small,
but measurably non-zero eccentricities, ranging from ~ 1072 to ~ 107° (see the third
group of entries in table 3).

Immediately after the neutron star formed, these orbits must have been much
more eccentric. If the neutron star formed in a supernova explosion, the associated
large impulsive mass loss virtually guarantees a highly eccentric orbit. In fact, the
binary system would become unbound if the exploding star had not previously lost
its hydrogen envelope, or the explosion were not asymmetrical in a suitably
contrived direction and amount. This is seemingly confirmed by the orbits of the
pulsars with neutron star companions, PSRs 1913416, 2303 +46 and 1534+ 12,
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which respectively have eccentricities of 0.62, 0.66, and 0.27. Even were the neutron
star to form without loss of baryons, in the collapse of a white dwarf driven by
accretion beyond its maximum stable mass, the initial orbital eccentricity e would
exceed ~ 0.1. This is because neutrinos carry off the binding energy of the final
neutron star, reducing the gravitational mass of the system by ~ 0.2M in a time
much shorter than the orbital period. In either case, the orbits of the pulsars in all
but the first group table 3 must have been circularized after their neutron stars
formed. The next paragraph explains (cf. the elegant series of papers by Zahn (1966))
how this circularization occurred. The remainder of the section addresses the
question of why the eccentricities are not consequently much smaller than they are
observed to be.

Some time after the neutron star (now the pulsar) forms, its companion’s nuclear
evolution will cause the companion to swell to a giant, as described in §4. As it swells,
it will become more and more distorted by the gradient of the pulsar’s gravitational
field. If the orbit is eccentric, the tide, and hence the companion’s tidal distortion,
will be time dependent. The energy so dissipated comes from the energy of epicyclic
motion of the eccentric orbit, which, like the dissipation, vanishes for a circular orbit.
Thus the dissipation inexorably leads to damping of the epicyclic motion and so
circularizes the orbit (the tide is also time dependent if the companion’s rotation
period is not equal to the orbital period. It can be shown, however, that the tidal
torque synchronizes the spin even faster than it damps the orbital eccentricity, so the
late stages of evolution are well described as circularization of an orbit with the
companion locked in synchronous rotation. A neutron star, by contrast, is so tiny
that tidal forces on it are utterly negligible, so pulsar spins are not synchronized).

(@) Tidal circularization

Consider a nearly circular binary of semi-major axis a, period P,, and eccentricity
e < 1. The tidal forces caused by the pulsar, of mass M, on its synchronous swollen
companion, of mass M, and radius R, can be decomposed into a static tide and a
variable tide. The static tide distorts the equipotential of the companion’s surface
from the sphere it would be in isolation by a height ~ (M /M ) (R3/a®), but since it
is static, causes no motion or dissipation in the companion. The variable tide is most
easily understood from the point of view of an observer standing on the surface of the
companion with the pulsar initially overhead. Over the course of an orbit, he would
see the pulsar’s distance vary by 4 ae. After one orbit, the pulsar would again be
overhead. But Kepler’s second law requires that the orbital angular velocity vary as
the inverse square of the pulsar distance, while the companion rotates at constant
angular velocity 2n /P, (as synchronous as it can be). So the pulsar will in the interval
have wandered back and forth by an angle ~ e across the observer’s sky. Thus the
variable tide gives both vertical and horizontal displacements of amplitude

£~ (My/M,)(r/a)e, (7.1)

at radius r from the centre of the companion (assumed centrally concentrated enough
that M(< r) ® M,). Since £ varies at the orbital frequency @, = 2n/F,, material near
the companion’s surface must move with velocity v ~ £, §, and have both vertical
and horizontal velocity gradients

Vu ~ Q, &/r. (7.2)
Let us temporarily pretend that there is a non-zero viscosity v only in a layer of the
Phil. Trans. R. Soc. Lond. A (1992)
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64 E. S. Phinney

star of thickness /{ and density p, at radius » (< R,) within the companion. Then the
rate of viscous dissipation of energy in the motion driven by the variable tide is

By ® 410® Hpv |Vul?. (7.3)

If the companion is convective at the surface, the largest viscosity will be eddy
iscosity,

viscosity V= Vegay ~ Hoy, (7.4)

where v, is the velocity of convective motion in the eddies of scale height H.
Combining the last four equations, we have

Eyios = dmpvy H2 Q2(M /M) (r8/af) €2. (7.5)
dis p c

This comes at the expense of the epicyclic energy of the orbit. This is the difference
in total energy between the eccentric orbit and a circular orbit of the same angular
momentum (nearly conserved in the evolution):

B, =160M, M,é*/a. (7.6)

Equating dE,/dt = — By, and using Q2 = G(M, +M,)a~? in the last two equations,
we see that the eccentricity decays exponentially,

t
e(t) = e(0) exp [—J dt’/’rC(t’)], (7.7)
0
where the circularization timescale 7, is given by

1 tde 8npH’vy M, +M, (%)2 (Z)S
c

7. edt M, H M, \M

(7.8)

a

In a convective layer of a star of luminosity L, the flux ¥ = L/(4nr?) is carried by
convection, F ~ pv¥. Thus the eddy turnover frequency

1 vy L 3
ey H (m) ' (7.9)

Substituting this in equation (7.8), we have

L tde_( L \VH2M M+ My (M) (7.10)
T edt \M,r*)\r) M, M, \M,)\a)’ ‘

c

where M,, = 4mpr? H is the mass of the viscous layer.

To calculate the circularization rate for a red giant star, we must sum equation
(7.10) over all the convective layers of the giant. Conveetlon keeps the giant’s
envelope isentropic, so outside of ionization zones, p oc pf. Thus for (surface) layers at
r> 1R, the density seale height H ~ (R—7),p oc Hi, M,, oc Hi, and the layer’s
contribution to 1/7, oc H%. Thus the deepest of these layers have most of the mass
and damping. For the deep layers at r < 1R, H ~r, p oc 7%, M, oc 7, and the layer’s
contribution to 1/7, oc #%. Therefore in a red giant, most of the envelope s mass and
damping arise from the convection cells at r ~ iR, with scale height of order their
radii. Thus to a very good approximation (eonﬁrmed by more careful integrations
over giant structure)

1 lde_f L\ Mo M, +M, (M) (R, (7.11)
T, edt "\M.,,R: M, M, MC a)’ '
Phil. Trans. R. Soc. Lond. A (1992)
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Pulsars as probes of newtonian dynamical systems 65

where f is a dimensionless number of order unity which depends on the mixing length
parameter, the coefficient of turbulent viscosity, and (very weakly) on the density
profile of the giant’s envelope. This equation (with f = 0.8) was derived by Zahn
(1977), as corrected in 1978 in an erratum; a nicely pedagogical discussion of the
physics is in Zahn (1966)), except that he assumed M., = M,, appropriate for
detached giants but not for those for which mass transfer has reduced M,,, < M.

env

(b) Testing tidal circularization theory

Since f in equation (7.11) for the rate of tidal circularization depends on mixing
lengths and the coefficient of eddy viscosity, whose precise numerical values are the
subject of some controversy, it seemed desirable to subject the circularization theory
to a quantitative test, and so check the scalings with R, M, etc., and constrain f.

The populations of spectroscopic binaries in open star clusters are ideal for this
purpose. All the giant and subgiant stars in a given cluster have nearly the same
mass, and since that mass and the cluster’s distance can be determined by main
sequence fitting (if not by more direct means), multicolour photometry can
determine L, T, and hence R, for each star. The binaries of interest are those
containing a giant (or subgiant) of mass M, and a main sequence star (pointlike mass
M, here playing the role of what in deriving equation (7.11) we call the pulsar). If
the spectroscopic binary is double-lined, M, can be determined directly ; if not, it can
be estimated statistically from the mass function. The orbital period, total mass, and
Kepler’s third law determine the orbital semi-major axis @. Thus all quantities on the
right-hand side of equation (7.11) except f are determined directly from observables.

Consider now the evolution of an eccentric binary wide enough that when both
stars are on the main sequence, 7, exceeds the main sequence lifetime of the more
massive star. Then when that star (mass M) begins to evolve off the main sequence,
the binary will still have its primordial eccentricity (median e(0) ~ 0.3). As the star
swells, the rate of circularization 1/7, (equation (7.11)) increases rapidly: by a factor
of ~ 108 for each factor of 10 increase in R, (the factor (L/R2)s oc T, is nearly
constant as a star ascends the giant branch), and

t
—Alne= J dt’/7.(t)
0
(see equation (7.7)) starts to exceed unity. When it exceeds 3, the eccentricity of a
median binary will have been reduced to a (spectroscopically) undetectable 0.01.

Verbunt & Phinney (1992) have integrated equation (7.11) along the evolutionary
tracks appropriate to 31 binaries in 12 open clusters. Using these tracks and the
observationally determined parameters, they find that binaries for which (7.11)
predicts (—Alne)/f >3 are circular, while those with predicted (—Alne)/f <3
have large eccentricities. This constrains f:0.5 < f <2, as predicted by simple
theory. It also holds over a wide range of R, and @, and confirms that the
circularization depends on (R./a) as predicted.

(Some care is required to distinguish binaries: (1) in which the companion is a
white dwarf, whose previous evolution can have circularized the orbit even if the
presently observed giant cannot have, and (2) those in which the giant is actually a
He core burning ‘red clump’ star, which during hydrogen shell burning previously
reached a maximum radius much larger than its current one.)

Phil. Trans. R. Soc. Lond. A (1992)
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66 E. 8. Phinney

(¢) The puzzle

As the giant continues to swell and mass transfer begins, the predicted —Alne
continues to rise, easily reaching values of 10>-10*. The puzzle is then the following :
the pulsars with low mass white dwarf companions (third group in table 3) must, as
described in §4, have been through a phase in which the red giant progenitor of the
white dwarf filled its Roche lobe (£, 2 0.25a). Unless the mass transfer was
dynamically unstable (a possibility for PSR0655+ 64 (see §4 and figure 6), but very
unlikely for the three millisecond pulsars in the third group of table 3, whose spin-
up would need at least ~ 10° years even at the Kddington accretion rate), the
circularization theory outlined above then predicts orbital eccentricities less than
e 1% (107*%). The observed eccentricities while small, are definitely non-zero and
range from 107° to 1072 So, although many authors have happily pointed out that
the orbits of these pulsars are nearly circular, confirming that circularization took
place ‘as predicted’, the orbits are in fact tens of orders of magnitude more eccentric
than the standard theory of tidal circularization would predict. This puzzle seems
not to have been noticed before.

Before recognizing the ineluctable consequence for tidal circularization of the
fluctuation—dissipation theorem (described in the next subsection), I considered a
number of other mechanisms which would impart eccentricities to circularized
orbits. All seem unimportant. Perturbations to the binary by passing stars can
induce eccentricities given by equations (5.1)—(5.3). However, the probability that
passing disc or halo stars (or putative 10°M black holes making up dark matter in
the galactic halo) would pass close enough to any one of the pulsars to excite its
observed eccentricity is small, and the probability that all four pulsars in the
third group of table 3 should have had such close passages is incredible. Small
eccentricities can also be induced by rapid mass loss at the end of the red giant’s
evolution. However, to produce the observed eccentricities would require terminal
mass loss rates M 2 1072M a™!, and the other pulsars require even larger rates.
Finally, the accretion disc around the neutron star is non-axisymmetric and torques
could cause growth of the orbital eccentricity. However, unless the disc’s viscosity
parameter o is much smaller than expected (¢ < 107, compared with a ~ 10721
favoured by models of outbursts in cataclysmic variables), the disc mass is so low
that eccentricities as large as those observed appear unattainable.

By contrast, resonant excitation of the massive circumbinary discs which might
exist around protostars can pump large eccentricities on interesting timescales. This
has been proposed as the mechanism for giving binary stars their large primordial
eccentricities (Artymowicz et al. 1991).

(d) Convection, fluctuation—dissipation, and residual eccentricities

The epicyclic motion of a binary in a slightly eccentric orbit can be viewed as a
harmonic oscillation about the guiding circular orbit. If one of the stars is large and
convective, this oscillation is, as described above, damped by the turbulent viscosity
of eddies mixing its momentum. The simplest familiar example of a damped
harmonic oscillator is a pendulum swinging in air. As the pendulum swings, it collides
preferentially with air molecules on its leading side, thus losing energy until
seemingly at rest. We all know, however, that the pendulum is never really at rest;
if it were, bombardment by air molecules would gradually, and randomly increase its
momentum and energy. The actual energy is then a random variable. But the mean

Phil. Trans. R. Soc. Lond. A (1992)
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Pulsars as probes of newtonian dynamical systems 67

energy, for which the drag and the brownian excitation balance, is given by the
familiar equipartition theorem of statistical mechanics: k7" per harmonic degree of
freedom. Hence (& .,.> = k7T};,. Roughly, a pendulum’s (statistical) minimum
energy is equal to that of a single air molecule.

What in the tidally circularizing binary are the analogues of the air molecules and
kT,;.? One might guess that they are the convective eddies and their kinetic energy.
We now show that this guess is correct, and that it offers a quantitative explanation
of the eccentricities observed in the pulsar binaries.

The coupling between convective eddies and the epicyclic motion (the analogues
of the collisions between air molecules and the pendulum) is through the density
fluctuations produced by convection. Convection occurs because heated fluid
elements expand (8p/p = —87/T < 0) and rise buoyantly for about one density scale
height H = (—d In p/dr)~*. While rising, they reach terminal speed v, given by

vl ~ g(8p/p)H ~ cE<{8p®¥/p, (7.12)
where ¢ is the local sound speed. In the mixing length picture, these rising fluid
elements transfer their energy to eddies at the next scale height, and, having so
cooled and become denser, sink back down. The thermal and kinetic energy fluxes in
the eddies, both of order pv¥;, carry most of the star’s luminosity, so v, is determined

by L/Am® ~ pvd. (7.13)

Models of red giant envelopes give us p(r), ¢ (r), and L(r), so equations (7.12) and
(7.13) (which, up to numerical coefficients of order unity, describe standard mixing
length theory outside of 10n1zat10n or partly radiative zones) determine the scale (~

H) and rms amplitude (§p?)¥/p of density fluctuations at each point in the star. The
density field of these eddies fluctuates randomly, with decorrelation time given by
equation (7.9). This causes the star’s external gravitational force field to fluctuate;
these fluctuating forces acting on the pulsar are what excites the orbital eccentricity.
Conservation of mass and linear momentum keep the star’s monopole and dipole
moments fixed. The quadrupole moment tensor

@y = J(3xi ;= 1%0y) p(x) d® x (7.14)

is the lowest fluctuating moment, and the one which dominates the fluctuating force
at large distances.

Just as we did in our calculation of tidal dissipation, let us now temporarily
pretend that the convection is confined to a layer of scale height H at radius r. The
contribution §(3¢),,) of one convective eddy to the fluctuation 8Q,, of e.g. @,, is the
difference between the value of @,, in the presence of the eddy (whose temperature
and density profile must be rather step function-like, as in Bénard convection cells)
and the smooth averaged density profile. Thus

3(8Q,,) ~ (3 cos® 0—1) pH*rdp/p, (7.15)
where @ is the polar angle between the eddy and the z-axis, and we have assumed that
the eddy covers area ~ H?. There are N & 4nr?/H? such eddies in the layer, and in

each eddy dp/p is an independent random variable. Thus <8@,,> = 0, but the
variance, integrated over the layer at radius » is non-zero:

{(8Q..)*) ~ N[3(3Q,)|* ~ NsH®r*p*(8p*> / p*, (7.16)
so the r.m.s. fluctuating quadrupole moment contributed by the layer is
{(3Q.)% & Hirp (8p*)¥/p. (7.17)

Phil. Trans. R. Soc. Lond. A (1992)

3-2


http://rsta.royalsocietypublishing.org/

/,//’ \\
o \
( 2\

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N\\

A

a

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

68 E. S. Phinney

Because of this fluctuating quadrupole, the neutron star at distance |x| from the
centre of the companion, moves through a fluctuating potential
GOQ,; x;

1
3¢ = 53—————|x|5 ; (7.18)

and thus feels fluctuating forces 3/ (¢) of order
dF(t) ~ 8Q,; GM ,/a’. (7.19)

The equation for the radial motion « = r—r, of the eccentric orbit with guiding circle
radius r, & a is then
WE+ () 7,) &+ sy x = SF(t), (7.20)

where u = M, M./ (M,+M,) is the reduced mass, Qf = G(M,+M,) a ? is the square of
the orbital frequency, and 7, is the circularization timescale (given, in the case of a
single convective layer by equation (7.8), and in general by equation (7.11)). The left-
hand side of equation (7.20) describes slowly damped (since 1/7, € £2,) harmonic
oscillations of amplitude ae in # = r—r,. The right-hand side is the random forcing
term, with rms amplitude given by equations (7.19) and (7.17), and decorrelation
time given by equation (7.9).

To solve the stochastic differential equation (7.20), we define power spectral
densities for the fluctuating force and the epicyclic radius:

flo)= %fo CFOFE+T)) cos wT dT,

9 (@ (7.21)
g(w) = EJ () x(t+T)) cos 0T dT,

where the brackets denote ensemble averages. Note that
(F?y = J flw)dow and (%)= J g(w)dw.
0 0

If we now Fourier transform equation (7.20), we obtain Z& = F, where tildes
denote Fourier components and the impedance

Z = pu(—w?+in/7,+Q2). (7.22)
Making use of the familiar result that
g(w) = flw)/ZZ%, (7.23)
_ [“flw)do
we have {x%y = L R (7.24)

But since 1/7, (typically ~ 107% a™! is much less than 2, (X 1 a™), equation (7.22)
shows that 1/ZZ* is nearly a delta function at the orbital frequency €,, i.e. the
damping is so weak that only forcing frequencies in a narrow window about the
orbital resonance contribute. So to very good approximation,

@) = 3 f( Q) mre/p* 2, (7.25)
and so the average total orbital energy associated with the epicyclic motion
By = ey a® +gud®)y = plia®y = gn(re/p) fi€2y). (7.26)

Phil. Trans. R. Soc. Lond. A (1992)
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Pulsars as probes of newtontan dynamical systems 69

Most of the power in the fluctuating force field will be at the eddy turnover
frequency 7.4, (equation (7.9)). At lower frequencies, the uncorrelated eddies should
give a white noise spectrum. At higher frequencies the power spectrum of the
fluctuating force falls as a steep power of frequency (the high frequency power is
produced by the small density fluctuations of the Kolmogorov subeddies of the main
convective eddies). The fall-off at high frequency is so rapid that to a good
approximation, we may take

[<—Fz>7eddy? ® < Tegay = vp H™;
flw) ~ 10 (7.27)

~1
w > Teddy-

Using equation (7.19) and (7.17) to compute {#*), and inserting those in (7.27) and
hence, with (7.8) into (7.26), we find that

By~ pH®Y/4n or Q) < Tgiays (7.28)

i.e. the mean (ensemble or time average) energy in orbital epicyclic motion is just the
energy in a single convection cell. As conjectured at the beginning of the subsection,
this is completely analogous to (K, .,.> = kT};, for a pendulum swinging in air.
Equation (7.28) determlnes the mean square orbital eccentricity, since

E, =1uQ? a%*. (7.29)

(e) Real giants and real pulsars

To compute the mean square eccentricity of a binary system containing a real
giant, we must sum the contributions to the power spectrum of the fluctuating force
flw), just as we did in deriving the circularization time (7.11). Adopting the
approximate spectrum (7.27), we find

B, = > Hep*y,/ X 4dmpv, H2 (7.30)

layerswithvy/H >y, alllayers

Eddy viscosity may be ineffective if v,/H < €,, in which case the sum in the
denominator should also be restricted to v, /H > Q,, which would modify (7.11) for
very short period binaries (Zahn 1989). In the late stages of the evolution of a mass-
transferring giant, the mass of the conveetlve envelope is reduced to M,,, < M, (see
§4), and except in ionization zones, p oc pi. The equations of stellar structure then
give

p=px(Re/r—1), H=3%R,—r)r/R, and My, =in’p, R},

aLR, \t( r V(RN
i (lwenv) (RC—V) (7) ' (7~31)

From the preceding, we see that the eddies have high frequencies at the surface and
in the deep interior, but that at r = LR, v, /H reaches a minimum min(v,/H) =
2n/P,.;,. Thus in binaries with orbital periods P, greater than

and

Py X 2T Max (Toaqy) X 25(The/ (7000 K)) 8 (M, /(T 1072 M) d,  (7.32)
T

all layers have frequencies above resonance, and so all contribute to the sum in the
numerator of (7.30). In this case, if we insert the eddy properties of the simple

Phil. Trans. R. Soc. Lond. A (1992)
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polytropic convective envelope described by equation (7.31) and the text preceding
it into equation (7.30), we find

(B, =1u2a? ey = 3.4 x 10*(L2R2 M., )}, (7.33)

where the dimensionless prefactor comes from the dimensionless integrals over the
density and convection velocity profiles in the envelope. Note that larger and more
luminous giants, whose tenuous envelopes require more vigorous convection, have
larger epicyclic energies, as might have been guessed from the simple single-layer
equipartition result (7.28).

(f) Freeze-out and prediction of eccentricity

While a neutron star’s red giant companion is filling its Roche lobe, transferring
mass and spinning up the neutron star, the orbit will have a mean square eccentricity
given by (7.33). This eccentricity is a random variable, built up over the
circularization time 7, (~ 10* years for a typical system) by the small fluctuating
resonant forces (rapidly variable on a timescale ~ H/v, < 1 year). From equation
(7.20) and the white noise approximation (7.27), one can show that the eccentricity
has decorrelation time 27,:

le(t)e(t+T)) ccexp[—T/(27,)] (7.34)

By the time we see the spun-up neutron star as a radio pulsar, and measure the
orbital eccentricities, however, its giant companion has become a white dwarf.
Applying equation (7.33) to the white dwarf would predict an infinitesimal
eccentricity. But the timescale 7, (equation (7.11)) to reach that equilibrium would
vastly exceed the age of the universe. So to determine the residual eccentricity of the
pulsar-white dwarf binary, we must investigate more carefully what happens during
the transition from a red giant to a white dwarf, as 7,00, and the eccentricity
‘freezes out’. (The term ‘freeze-out’ is suggested by the very close analogy with
reactions in an expanding universe. Neutrinos and neutrons, for example are initially
in thermodynamic equilibrium. But as the universe expands, the reaction rates
involving them become slower than the expansion rate, and their abundance
becomes ‘frozen’.) As mass transfer reduces the giant’s envelope mass M,,, to about
eight times the mass of the hydrogen burning shell (~ 107*M ) the radiative shell
begins to react to the change in the hydrostatic pressure, and the giant’s luminosity
and radius begin to decrease (Refsdal & Weigert 1970, 1971; and §4). This
contraction occurs on the nuclear timescale (from Refsdal & Weigert (1970)
~ 107 years for a 0.26, giant filling the Roche lobe of a B =30d binary;
~ Tx 10° years for a 0.44 M giant filling the Roche lobe of a P, = 3 years binary). This
is initially much longer than 7., so the orbital {e?) will be the equilibrium (7.33)
appropriate to the shrinking envelope. But once R < 0.5 R, (£, is the radius of the
giant’s Roche lobe, R, ~ 0.25a for the binaries in the third group of table 3), the
timescale for pumping and damping e, 7, oc B8, becomes longer than the timescale
on which the envelope is collapsing. The value of e is then ‘frozen’ at the value it had
when R~ 0.5R,,.

This gives us confidence that any pumping of the eccentricity by the accretion disc
is irrelevant. After the dwindling giant has shrunk inside its Roche lobe, ending mass
transfer and cutting off supply to the accretion disc, there are still hundreds of
circularization times to erase the memory of any eccentricity excited by the accretion
disc (or passing stars), and establish the equilibrium (7.33). Using, from Refsdal &

Phil. Trans. R. Soc. Lond. A (1992)
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Weigert (1970), that at half maximum radius the 0.2-0.4 M, shell burning giants
have M ,, ~ 7x 107 M and T, =~ 7000 K in equation (7.33), we find that for the

env
pulsar binaries

(2P x 1.5x 1074 (P,/(100d)) for P,>P,, ~25d. (7.35)

The actual value of e for a given binary pulsar cannot, of course, be predicted exactly,
depending as it does on the random history of eddies around the time of freeze out.
But the probability distribution e? at a given P, is predicted to be nearly a Boltzmann
distribution, P(e?)de® oc exp [ —e?/{e*)] de?.

It is encouraging that the eccentricities of the pulsars with low mass white dwarf
companions (third group in table 3) have eccentricities with numerical values of
order those predicted by equation (7.35), and have the expected trend (mean square
eccentricity increasing with orbital period; see discussion after (7.33)). The reader is
referred to a forthcoming paper (Phinney 1992) for a more detailed derivation of
these results, including higher multipoles than the quadrupole, Kolmogorov
subeddies, behaviour for P < P,,;,, and integrations through realistic giant envelopes,
including ionization zones. None of the complications considered lead to conclusions
qualitatively (or even very quantitatively) different from the simple form of the
theory presented here.

The foregoing is unusual among astrophysical theories in that it has no adjustable
parameters; the eccentricity distribution as a function of P, is predicted a priori. The
modest success can be regarded either as inevitable (no one disbelieves that red
giants are convective, nor that Newton’s laws apply to orbits), or astonishing
(convective turbulence is notoriously complicated, and one might have imagined
that in rapidly rotating stars, there might have been dramatic correlations or severe
anisotropy in the eddies). Large quadrupole moments could also be excited by Mira-
type large amplitude non-radial pulsations for the extreme giants in long-period
systems, and might be relevant to PSR0820+ 02.

8. Planets around pulsars

A planet of mass m orbiting a pulsar of mass M, in an orbit of semi-major axis a
and period P, years produces a periodic timing residual of semiamplitude (cf.
equation (1.5))

a,sint _ m asini m(1.4MO

Thus, for example in 1 year orbits around a 1.4 M, neutron star, at 1 = 60°, Jupiter
would produce a residual of semi-amplitude 0.46 s, Earth of 1.5 ms, the Moon of
18 us, and the asteroid Ceres 0.3 ps. As discussed in §1, timing residuals of 1 pus can
be measured for millisecond pulsars, so pulsar planetary systems containing
anything bigger than Moon-size objects are potentially detectable. Some pulsars, e.g.
PSR1937+21 (the original millisecond pulsar), clearly do not have any such
planetary systems (Thorsett & Phillips 1992).

But after several false signals involving young pulsars with quasi-periodic timing
noise and a millisecond pulsar whose incorrect position led a timing program to
interpret a harmonic of the Earth’s motion as a planet, there does now appear to be
a millisecond pulsar, PSR1257+12, around which orbit not just one, but two
planets. The system was discovered by Wolszezan & Frail (1992), and confirmed,

)any sin . (8.1)

p
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using an independent telescope, timing electronics, and Solar System ephemeris by
Backer et al. (1992). The two planets are on nearly circular orbits of periods 67 and
98 days (table 3). Their mass functions suggest masses of a few times that of the
Earth. If this interpretation is correct, it is amusing to note that the angular
momentum in the neutron star spin ~ 1.0 x 10*® g em®s™* (about a tenth the total
angular momentum of the Sun!) is remarkably comparable with the total angular
momentum of its two planets ~ 1.4 x 10*® g em® s™'. By contrast, Jupiter carries
most of the angular momentum in the Solar System (~ 10? times that of the Sun).

There have already been dozens of papers and a whole conference proceedings
(Phillips et al. 1992) devoted to the problem of forming these planets. Thus I confine
myself to a few general remarks. The planets cannot have been formed at the same
time as the pulsar’s progenitor (unless they perhaps were dragged in from very large
radii, a process which appears very difficult to stop at the required final radii), since
they would have been evaporated during the subsequent evolution. The pulsar has
all the characteristics (short period, low magnetic field) of one recycled by accretion
from a companion star, now vanished. This suggests that the planets may have
formed from debris released in the disruption of its companion. The evolution of such
a debris disc ought to be quite similar to that of the protosolar nebula, so it is perhaps
not surprising that both led to planetary systems.

PSR1937 421 warns us, however, that either there is more than one way to disrupt
a companion, or that not all debris discs form planetary systems. Despite these
speculations, some sceptics are still worried by the possibility that the timing
residuals are not caused by planets, but are a conspiracy of timing noise or pulsar
precession. Fortunately, newtonian dynamics offers a promising way to test the
planetary interpretation of PSR1257 4+ 12s residuals.

If the two planets lie in nearly the same orbital plane, as is expected if they formed
from an accretion or excretion disc (cf. the Solar System), then for each choice of the
inclination of the orbit to the line of sight (which determines the masses of the planets
oc 1/sin 1), one can make a definite prediction of the future orbits of the planets.
First, one can rule out the (one in a million) possibility that the orbit is so precisely
face-on that the masses of the planets are greater than that of Jupiter, for then
numerical integrations show that their mutual interactions would be so great that
one of them would have been ejected from the system long ago (Rasio et al. 1992).

Second, the planets are close to a 3:2 resonance: the inner planet goes around the
pulsar 2.95 x 3 times each time the outer one makes two revolutions in 196.4 d. Thus
the relative configurations of the planets repeat almost exactly every ~ 196.4 d, so
that their mutual gravitational effects on each others’ orbits (e.g. their longitudes of
periastron w and orbital eccentricities e) can build up over many orbital periods. The
difference of the planets’ phases with respect to this near resonance changes with
period P, given by 1/P; = 2/P,,—3/F,,, = 1/(5.3 years), so that their w and e should
vary almost periodically with period P,;. The amplitude of the oscillations in @ and
e caused by these mutual interactions are of order 0.5-3% (Rasio et al. 1992) for
t &~ 60° (the median value), but scale linearly with the masses of the planets, i.e. as
1/sin ¢ for sin 4 2 0.1. For sin ¢ < 0.1, the masses of the planets are large enough that
for some configurations, their mutual perturbations could cause their orbits to
precess with a period of exactly P,, i.e. the planets could be locked in resonance. In
this case (possible but a priori improbable) the phase and eccentricity variations can
be even larger (Malhotra et al. 1992). Thus the existence of such variations in the
planets’ eccentricities and longitudes of periastron with a period of 5.3 years would

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

\
A
[\
N

A

a
//\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
'\

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Pulsars as probes of newtonian dynamical systems 73

confirm that the phase oscillations are indeed planets, and (from the amplitude of
oscillation) determine the orbital inclination.

9. Conclusion

It is striking what a broad range of newtonian dynamics pulsars allow us to
explore, in ways no other objects have permitted. From mass-to-light ratios and
mass segregation in globular clusters, to perturbation theory of the three-body
problem, to the gravothermal catastrophe and chaos in the three- and four-body
problem, to the fluctuating potentials of convective stars, to the dynamics of the first
planetary system beyond our own. It is also striking that most of the pulsars which
have allowed us to study these phenomena have been discovered in the past five
years. If this pace of discovery continues until pulsars’ golden anniversary, we may
need to raise Sir Isaac from the grave to help us keep up with understanding it all.
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Alfred P. Sloan Foundation. I thank J. Bahcall and P. Hut for their gererous hospitality at the
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